Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

Notation:

| Initial time | $\left(t_{1}\right)$ is zero: | $t_{0}=0$ |
| :--- | :--- | :--- | :--- |
| final time | $\left(t_{2}\right)$ is $t:$ | t |
| initial position | $\left(x_{1}\right)$ is : | x_{0} |
| final position | $\left(x_{2}\right)$ is : | x |
| initial velocity | $\left(v_{1}\right)$ is : | v_{0} |
| final velocity | $\left(v_{2}\right)$ is : | v |

Average Velocity: $\quad \bar{v}=\frac{x-x_{0}}{t-t_{0}}=\frac{x-x_{0}}{t} \quad$ Since $t_{0}=0$.
Acceleration: $\quad a=\frac{v-v_{0}}{t} \quad$ Assumed to be a constant.

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

Generic Problem:

Given an initial velocity, acceleration and time, determine the final velocity.

$$
a=\frac{v-v_{0}}{t} \Rightarrow v=v_{0}+a t
$$

Example: A rocket's acceleration is $50 \mathrm{~m} / \mathrm{s}^{2}$, how fast will it be going after $10 s$ if it starts at rest?

Given:

$$
\begin{aligned}
& \mathrm{a}=50 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{v}_{0}=0 \\
& \mathrm{t}=10 \mathrm{~s}
\end{aligned} \quad \mathrm{v}=0+\left(50 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~s})=500 \mathrm{~m} / \mathrm{s}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

Generic Problem: Find the position of an object that is undergoing a constant acceleration.

$$
\bar{v}=\frac{x-x_{0}}{t} \Rightarrow x=x_{0}+\bar{v} t
$$

Also, at constant acceleration we have that:

$$
\left.\bar{v}=\frac{v_{0}+v}{2} v=v_{0}+a t\right\}\left\{\begin{array}{l}
x=x_{0}+\left(\frac{v_{0}+v}{2}\right) t \\
x=x_{0}+\left(\frac{v_{0}+v_{0}+a t}{2}\right) t \\
\\
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
\end{array}\right.
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

If time is unknown:
$x=x_{0}+\bar{v} t=x_{0}+\left(\frac{v_{0}+v}{2}\right) t \quad$ and $\quad v=v_{0}+a t \Rightarrow t=\frac{v-v_{0}}{a}$

Substituting in

$$
\begin{aligned}
& x=x_{0}+\left(\frac{v+v_{0}}{2}\right)\left(\frac{v-v_{0}}{a}\right)=x_{0}+\frac{v^{2}-v_{0}^{2}}{2 a} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration
Equations of Motion At Constant acceleration

$$
\begin{aligned}
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v=v_{0}+a t \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& \bar{v}=\frac{v_{0}+v}{2}
\end{aligned}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration
Example: For a car to start from rest and reach speed of $30 \mathrm{~m} / \mathrm{s}$ ($\approx 65 \mathrm{mile} / \mathrm{hour}$) in 6 s with constant acceleration,
A) What must its acceleration be?
B) How far did it travel after 6 s?

Given:

- $\mathbf{x}_{0}=0 \mathrm{~m}$
- $v_{0}=0 \mathrm{~m} / \mathrm{s}$
- $v=30 \mathrm{~m} / \mathrm{s}$
- $t=6 s$
A)

$$
a=\frac{v-\grave{N}_{0}}{t}=\frac{30 \frac{\mathrm{~m}}{\mathrm{~s}}}{6 s} \Rightarrow a=5 \frac{\mathrm{~m}}{s^{2}}
$$

B)

$$
\begin{aligned}
& x=\not x_{0}+\not x_{0} t+\frac{1}{2} a t^{2}=\frac{1}{2} 5 \frac{m}{s^{2}}(6 s)^{2} \\
& x=90 m
\end{aligned}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-6: Problem Solving:

A car starts at rest, then it accelerates at
a constant $3 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take the car to go 50 m ?

> Before:

Strategy:

2) Make a table:
Known
$\mathbf{x}_{0}=0$
$\mathbf{x}=50 \mathrm{~m}$
$\mathrm{v}_{0}=0$
$\mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2}$

Wanted
t
3) Solve for the unknown:

$$
x=\frac{1}{2} a t^{2} \Rightarrow t^{2}=\frac{2 x}{a}
$$

$$
t=\sqrt{\frac{2 x}{a}}=\sqrt{\frac{2(50 m)}{3 m / s^{2}}}=5.77 s
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-6: Problem Solving:

A car starts at rest, then it accelerates at a constant $3 \mathrm{~m} / \mathrm{s}^{2}$, how fast will it go after 75 m ?

Before: $\quad a=3 \mathrm{~m} / \mathrm{s}^{2} \quad$ After:

Strategy:

1) Draw a diagram:
2) Make a table:

3) Solve for the unknown:

$$
\begin{aligned}
& v^{2}=2 a x \\
& v=\sqrt{2 a x}=\sqrt{2\left(3 \frac{\mathrm{~m}}{s^{2}}\right)(75 \mathrm{~m})}=21.2 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-6: Problem Solving:

A car is going at $10 \mathrm{~m} / \mathrm{s}, 7 \mathrm{~s}$ later it is going at $38 \mathrm{~m} / \mathrm{s}$, find the acceleration (assume it is constant).

Strategy:

1) Draw a diagram:

2) Make a table:

Known
$\mathrm{x}_{0}=0$
$v_{0}=10 \mathrm{~m} / \mathrm{s}$
$v=38 \mathrm{~m} / \mathrm{s}$
$t=7 \mathrm{~s}$
Wanted
a

3) Solve for the unknown:

$$
v=v_{o}+a t
$$

$$
a=\frac{v-v_{o}}{t}=\frac{28 \frac{m}{s}}{7 s}=4 \frac{m}{s^{2}}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-6: Problem Solving:
A car's speed is $10 \mathrm{~m} / \mathrm{s}$ and its acceleration is 4 $\mathrm{m} / \mathrm{s}^{2}$, find its position when its speed is $38 \mathrm{~m} / \mathrm{s}$.
Before
$a=4 \mathrm{~m} / \mathrm{s}^{2}$

Strategy:

1) Draw a diagram:
2) Make a table:

$$
\begin{array}{lc}
\text { Known } & \text { Wanted } \\
\mathbf{x}_{0}=0 & \mathbf{x} \\
\mathbf{v}_{0}=10 \mathrm{~m} / \mathrm{s} & \\
\mathrm{v}=38 \mathrm{~m} / \mathrm{s} & \\
\mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2} &
\end{array}
$$

3) Solve for the unknown:

$$
\begin{aligned}
& v^{2}=v_{o}^{2}+2 a\left(x-x_{0}\right) \\
& x=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{\left(38 \frac{m}{s}\right)^{2}-\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2\left(4 \frac{m}{s^{2}}\right)}=168 \mathrm{~m}
\end{aligned}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

An object falling freely near the Earth's surface is an example of a uniformly accelerated motion.

```
In the absence of air resistance, ALL objects fall
with the same constant acceleration.
```

This acceleration is due to gravity, it is denoted by g :

$$
g=9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

We can rewrite the equation of motion, substituting g for a and y for x (since it is a vertical motion):

$$
y=y_{0}+v_{0} t+\frac{1}{2} g t^{2}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

find its position (Choose y to be positive in the downwards direction)	
	t_{1}
	$\mathrm{t}_{2}=2.00 \mathrm{~s} \quad$ If $\mathrm{v}_{0}=0$ then: $y=y_{0}+v_{0} t+\frac{1}{2} g t^{2}$
	$t_{3}=3.00 \mathrm{~s} \quad y=\frac{1}{2} g t^{2}$
	\downarrow

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

$y_{0}=0$ Example: Drop a ball from a tower,	
	隹 ${ }^{\text {Remember }} \mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$
	$\begin{array}{r} \mathrm{t}_{1}=1.00 \mathrm{~s} \quad \text { If } \mathrm{v}_{0}=10 \mathrm{~m} / \mathrm{s} \text { then: } \\ y=y_{0}+v_{0} t+\frac{1}{2} g t^{2} \end{array}$
	$\mathrm{t}_{2}=2.00 \mathrm{~s} \quad y=v_{0} t+\frac{1}{2} g t^{2}$
	$\mathbf{y}_{1}=(10 \mathrm{~m} / \mathrm{s})(1.00 \mathrm{~s})+\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~s})^{2} / 2=14.9 \mathrm{~m}$
	$y_{2}=(10 \mathrm{~m} / \mathrm{s})(2.00 \mathrm{~s})+\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.00 \mathrm{~s})^{2} / 2=39.6 \mathrm{~m}$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

$y_{0}=0$ Example: Drop a ball from a tower, find its velocity

$$
\text { If } \mathrm{v}_{0}=10 \mathrm{~m} / \mathrm{s} \text { then: } v=v_{0}+a t
$$

$$
v_{1}=(10 \mathrm{~m} / \mathrm{s})+\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.00 \mathrm{~s})=19.8 \mathrm{~m} / \mathrm{s}
$$

$$
v_{2}=(10 \mathrm{~m} / \mathrm{s})+\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.00 \mathrm{~s})=29.6 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \text { If } \mathrm{v}_{0}=0 \text { then: } \quad v=a t \\
& \mathrm{v}_{1}=\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.00 \mathrm{~s})=9.80 \mathrm{~m} / \mathrm{s} \\
& \mathrm{v}_{2}=\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.00 \mathrm{~s})=19.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

How high will it go (how high is Point B)?

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a y \\
& y=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{0-\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2\left(-9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}=20.4 \mathrm{~m}
\end{aligned}
$$

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

Throwing a ball upwards
$v_{0}=20 \mathrm{~m} / \mathrm{s} \quad \mathrm{a}=-\mathrm{g}=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
(Choose y to be positive in the upwards
direction)
How long will it be in the air?

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

Giancoli: Chap. 2

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

Throwing a ball upwards
$B(v=0) \quad v_{0}=20 \mathrm{~m} / \mathrm{s} ; \quad a=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
(Choose y to be positive in the upwards direction)
At what time t will it reach a point $y=15.0 \mathrm{~m}$?
g $\quad y=y_{0}+v_{0} t+\frac{1}{2} a t^{2} \Rightarrow \frac{1}{2} g t^{2}-v_{0} t+y=0$
Using the solution of the Quadratic Equation

$$
\begin{aligned}
& t=\frac{v_{0} \pm \sqrt{v_{0}{ }^{2}-4 g y / 2}}{g} \\
& t=\frac{20 \frac{\mathrm{~m}}{\mathrm{~s}} \pm \sqrt{\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-2\left(9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(15.0 \mathrm{~m})}}{9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} \\
& t=0.990 \mathrm{~s} \quad t=3.09 \mathrm{~s}
\end{aligned}
$$

Quadratic Equation

$$
a t^{2}+b t+c=0
$$

Has the solution:

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Giancoli: Chap. 2
 Phsx 114, Fall 2000

Edge on Galaxy NGC 4565

This galaxy is about 40 million light years away

