Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

Notation:

Initial time	(t ₁)	is zero:	t ₀ =0
final time	(t ₂)	is t :	t
initial position	(x ₁)	is :	\mathbf{x}_{0}
final position	(x ₂)	is :	x
initial velocity	(v ₁)	is :	\mathbf{v}_{0}
final velocity	(v ₂)	is :	v

Average Velocity:
$$\overline{v} = \frac{x - x_0}{t - t_0} = \frac{x - x_0}{t}$$
 Since $t_0=0$.
Acceleration: $a = \frac{v - v_0}{t}$ Assumed to be a constant.

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

<u>Generic</u> Problem: Given an initial velocity, acceleration and time, determine the final velocity.

$$a = \frac{v - v_0}{t} \Longrightarrow v = v_0 + at$$

Example: A rocket's acceleration is $50m/s^2$, how fast will it be going after 10s if it starts at rest?

Given:

a = 50 m/s²

$$v_0 = 0$$

t = 10 s
 $v = 0 + (50 m/s^2) (10 s) = 500 m/s$

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

Generic Problem: Find the position of an object that is undergoing a constant acceleration.

$$\overline{v} = \frac{x - x_0}{t} \Longrightarrow x = x_0 + \overline{v}t$$

Also, at constant acceleration we have that:

$$\overline{v} = \frac{v_0 + v}{2}$$

$$v = v_0 + at$$

$$x = x_0 + \left(\frac{v_0 + v_0}{2}\right)t$$

$$x = x_0 + \left(\frac{v_0 + v_0 + at}{2}\right)t$$

$$x = x_0 + v_0t + \frac{1}{2}at^2$$

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

If time is unknown:

$$x = x_0 + \overline{v}t = x_0 + \left(\frac{v_0 + v}{2}\right)t$$
 and $v = v_0 + at \Longrightarrow t = \frac{v - v_0}{a}$

Substituting in

$$x = x_0 + \left(\frac{v + v_0}{2}\right) \left(\frac{v - v_0}{a}\right) = x_0 + \frac{v^2 - v_0^2}{2a}$$
$$v^2 = v_0^2 + 2a(x - x_0)$$

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

Equations of Motion At Constant acceleration

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v = v_0 + a t$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

$$\overline{v} = \frac{v_0 + v}{2}$$

Phsx 114, Fall 2000

Chap 2-5: Motion at Constant Acceleration

Example: For a car to start from rest and reach speed
of 30 m/s (≈ 65 mile/hour) in 6 s with constant
acceleration,

- A) What must its acceleration be?
- B) How far did it travel after 6 s?

Given:
A)
$$a = \frac{v - v_0}{t} = \frac{30 \frac{m}{s}}{6s} \Rightarrow a = 5 \frac{m}{s^2}$$

• $x_0 = 0 \text{ m/s}$
• $v = 30 \text{ m/s}$
• $t = 6s$
B) $x = x_0 + v_0 t + \frac{1}{2} a t^2 = \frac{1}{2} 5 \frac{m}{s^2} (6s)^2$
 $x = 90m$

Phsx 114, Fall 2000

Chap 2-6: Problem Solving:

A car starts at rest, then it accelerates at a constant 3 m/s², how long will it take the car to go 50 m? After: $a = 3m/s^2$ Before: $\mathbf{v}_0 = \mathbf{0}$ Strategy: 1) Draw a diagram: $\mathbf{x}_0 = \mathbf{0}$ x=50 m 2) Make a table: 3) Solve for the unknown: Wanted $x = \frac{1}{2}at^2 \Longrightarrow t^2 = \frac{2x}{2}$ Known $\mathbf{x}_0 = \mathbf{0}$ t x = 50 m $t = \sqrt{\frac{2x}{a}} = \sqrt{\frac{2(50m)}{3m/s^2}} = 5.77s$ $\mathbf{v}_0 = \mathbf{0}$ $a = 3 m/s^2$

Phsx 114, Fall 2000

Chap 2-6: Problem Solving:

A car starts at rest, then it accelerates at a constant 3 m/s^2 , how fast will it go after 75 m?

Strategy:

1) Draw a diagram:

2) Make a table:

Known Wanted $x_0 = 0$ v x = 75 m $v_0 = 0$ $a = 3 \text{ m/s}^2$

3) Solve for the unknown:

$$v^{2} = 2ax$$

 $v = \sqrt{2ax} = \sqrt{2(3\frac{m}{s^{2}})(75m)} = 21.2\frac{m}{s}$

Phsx 114, Fall 2000

Chap 2-6: Problem Solving:

A car is going at 10 m/s, 7 s later it is going at 38 m/s, find the acceleration (assume it is constant).

Strategy:

1) Draw a diagram:

2) Make a table:

Known	<u>Wanted</u>
$\mathbf{x}_0 = 0$	a
$v_0 = 10 \text{ m/s}$	
v = 38 m/s	
t = 7 s	

3) Solve for the unknown:

$$v = v_o + dl$$

 $\mathbf{v} = \mathbf{v} + \mathbf{a} \mathbf{t}$

$$a = \frac{v - v_o}{t} = \frac{28\frac{m}{s}}{7s} = 4\frac{m}{s^2}$$

Phsx 114, Fall 2000

Chap 2-6: Problem Solving:

A car's speed is 10 m/s and its acceleration is 4 m/s^2 , find its position when its speed is 38 m/s. After $a = 4 m/s^{2}$ v = 38 m/sBefore $v_0 = 10 \text{ m/s}$ Strategy: 1) Draw a diagram: 2) Make a table: 3) Solve for the unknown: Wanted $v^2 = v_0^2 + 2a(x - x_0)$ Known $\mathbf{x}_0 = \mathbf{0}$ х $x = \frac{v^2 - v_0^2}{2a} = \frac{(38\frac{m}{s})^2 - (10\frac{m}{s})^2}{2(4\frac{m}{s^2})} = 168m$ $v_0 = 10 \text{ m/s}$ v = 38 m/s $a = 4 m/s^2$

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

An object falling freely near the Earth's surface is an example of a uniformly accelerated motion.

In the absence of air resistance, ALL objects fall with the same constant acceleration.

This acceleration is due to gravity, it is denoted by g:

 $g = 9.80 \text{ m/s}^2$

We can rewrite the equation of motion, substituting g for a and y for x (since it is a vertical motion):

$$y = y_0 + v_0 t + \frac{1}{2}gt^2$$

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

 $y_0 = 0$ **Example:** Drop a ball from a tower, find its position (Choose y to be positive in the downwards direction) $t_1 = 1.00 s$ Remember $q = 9.80 \text{ m/s}^2$ If $v_0 = 0$ then: $t_2 = 2.00 s$ $y = y_0 + v_0 t + \frac{1}{2}gt^2$ $y = \frac{1}{2}gt^2$ $t_3 = 3.00 s$ $y_1 = (9.80 \text{ m/s}^2)(1.00 \text{s})^2 / 2 = 4.90 \text{ m}$ $y_2 = (9.80 \text{ m/s}^2)(2.00 \text{s})^2 / 2 = 19.6 \text{ m}$ $y_3 = (9.80 \text{ m/s}^2)(3.00 \text{s})^2 / 2 = 44.1 \text{ m}$

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

 $y_0 = 0$ **Example:** Drop a ball from a tower, -find its position Remember $g = 9.80 \text{ m/s}^2$ If $v_0 = 10$ m/s then: $t_1 = 1.00 s$ $y = y_0 + v_0 t + \frac{1}{2}gt^2$ $y = v_0 t + \frac{1}{2}gt^2$ $t_2 = 2.00 s$ $y_1 = (10 \text{ m/s})(1.00 \text{ s}) + (9.80 \text{ m/s}^2)(1.00 \text{ s})^2 / 2 = 14.9 \text{ m}$ $y_2 = (10 \text{ m/s})(2.00 \text{ s}) + (9.80 \text{ m/s}^2)(2.00 \text{ s})^2/2 = 39.6 \text{ m}$

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

 $y_0 = 0$ **Example:** Drop a ball from a tower, find its velocity If $v_0 = 10$ m/s then: $v = v_0 + at$ $v_1 = (10 \text{ m/s}) + (9.80 \text{ m/s}^2)(1.00 \text{s}) = 19.8 \text{m/s}$ $t_1 = 1.00 s$ $v_2 = (10 \text{ m/s}) + (9.80 \text{ m/s}^2)(2.00 \text{s}) = 29.6 \text{m/s}$ $t_2 = 2.00 s$ If $v_0 = 0$ then: v = at $g = 9.80 \text{ m/s}^2$ $v_1 = (9.80 \text{ m/s}^2)(2.00 \text{s}) = 9.80 \text{ m/s}$ $v_2 = (9.80 \text{ m/s}^2)(2.00 \text{s}) = 19.6 \text{ m/s}$

Phsx 114, Fall 2000

Chap 2-7: Falling Objects:

Phsx 114, Fall 2000

Edge on Galaxy NGC 4565

This galaxy is about 40 million light years away