Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7: Linear Momentum

Other than energy there are other quantities that are conserved, Electric charge, and linear and angular momentum.
Chap 7-1: Momentum and Force
Linear momentum is defined to be the mass time the velocity

$$
\mathbf{p}=\mathrm{mv}
$$

v is a vector and so is p, p is in the same direction of v with a magnitude

$$
\mathrm{p}=\mathrm{mv}
$$

The SI unit for momentum is mv which is $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$
The heavier and faster an object, the higher its momentum.

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-1: Momentum and Force

To change the momentum of an object, a force has to be applied.

Newton's $2^{\text {nd }}$ Law of Motion, revisited:
The rate of change of the momentum of an object is equal to the net force applied to it.

$$
\sum F=\frac{\Delta p}{\Delta t}=\frac{m v_{2}-m v_{1}}{\Delta t}=\frac{m\left(v_{2}-v_{1}\right)}{\Delta t}=m \frac{\Delta v}{\Delta t}
$$

$$
\sum F=m a
$$

These are equivalent as long as the mass remains constant.

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-1: Momentum and Force
Example: Find the force exerted by water coming out of a hose at $13 \mathrm{~m} / \mathrm{s}$ at a rate of $3 \mathrm{~kg} / \mathrm{s}$? Assume horizontal flow. No splashing.

At each second

$\mathrm{p}_{\mathrm{x}}=\mathrm{mv}_{\mathrm{x}}=(\mathbf{3} \mathbf{~ k g})(13 \mathrm{~m} / \mathrm{s})=39 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
When the water hits a wall it is stopped and its velocity is zero.
The force it takes to do that is

$$
F=\frac{\Delta p}{\Delta t}=\frac{p_{f}-p_{i}}{\Delta t}=\frac{0-39 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}}{1 \mathrm{~s}}=-39 \mathrm{~N}
$$

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-2: Conservation of Momentum

Two balls colliding, the momentum of each changes, the sum is conserved.

$$
m_{1} \mathbf{v}_{1}+\mathrm{m}_{2} \mathbf{v}_{2}=\mathrm{m}_{1} \mathbf{v}_{1}^{\prime}+\mathrm{m}_{2} \mathbf{v}_{2}^{\prime}
$$

Assume that the force that one ball exerts on
 the other during the collision is constant.

$$
\begin{array}{cr}
\vec{F}=\frac{\Delta \vec{p}}{\Delta t} \Rightarrow \Delta \vec{p}=\vec{F} \Delta t & \text { Newton's 2 }{ }^{\text {nd }} \\
\Delta \vec{p}_{2}=m_{2} \vec{v}_{2}-m_{2} \vec{v}_{2}^{\prime}=\vec{F}_{21} \Delta t & \\
\Delta \vec{p}_{1}=m_{1} \vec{v}_{1}-m_{1} \vec{v}_{1}^{\prime}=\vec{F}_{12} \Delta t=-\vec{F}_{21} \Delta t & \text { Newton's 3rd } \\
m_{1} \vec{v}_{1}-m_{1} \vec{v}_{1}^{\prime}=-\left(m_{2} \vec{v}_{2}-m_{2} \vec{v}_{2}^{\prime}\right) & \\
m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=m_{1} \vec{v}_{1}^{\prime}+m_{2} \vec{v}_{2}^{\prime} & \text { Conservation of momentum } \\
15
\end{array}
$$

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-2: Conservation of Momentum

Momentum is conserved for any number of interacting bodies.
Law of conservation of momentum:

The total momentum of an isolated system of bodies remains constant.

Example: A 8,000 kg engine goes at 20 m / s and strikes a stationary engine.
Find the final velocity \mathbf{v}^{\prime}.

$$
\begin{aligned}
& p_{i}=m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v^{\prime}=p_{f} \\
& v^{\prime}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{(8,000 \mathrm{~kg})\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+0}{16,000 \mathrm{~kg}}=10 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \begin{array}{l}
\text { Half the } \\
\text { initial speed }{ }_{5 \text { of } 15}
\end{array}
\end{aligned}
$$

Giancoli: Chap. 7

Phsx 114, Fall 2000

Chap 7-2: Conservation of Momentum

Example: Find the recoil velocity of a 155 kg gun that shoots a 0.50 kg bullet at $100 \mathrm{~m} / \mathrm{s}$.

$$
\begin{gathered}
p_{i}=0=m_{R} v_{R}^{\prime}+m_{B} v_{B}^{\prime}=p_{f} \\
m_{R} v_{R}^{\prime}=-m_{B} v_{B}^{\prime} \Rightarrow v_{R}^{\prime}=-\frac{m_{B} v^{\prime}}{m_{R}} \\
v_{R}^{\prime}=-\frac{(0.50 \mathrm{~kg})\left(100 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{155 \mathrm{~kg}}=-0.32 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-3: Collisions and Impulse

During collisions a large force is acting for a short time, during which the objects deform.

Newton's 2 ${ }^{\text {nd }}$ Law says $\quad F=\Delta p / \Delta t$

Impulse is defined to be

Impulse $=\mathbf{F} \Delta t=\Delta p$

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-3: Collisions and Impulse

Calculate the impulse experienced when a 50 kg person lands on firm ground after jumping from a height of 2.0 m .

The impulse $=\mathrm{F} \Delta \mathrm{t}=\Delta \mathrm{p}$. Although we don't know the force we can find the change of momentum:

$$
\begin{aligned}
& \text { Conservation of energy: } \quad \Delta \mathrm{KE}=-\Delta \mathbf{P E} \\
& 1 / 2 \mathbf{m} \mathbf{v}^{\mathbf{2}}-\mathbf{0}=-\mathbf{m g}\left(\mathbf{y}-\mathbf{y}_{\mathbf{0}}\right) \\
& v=\sqrt{2 g\left(y-y_{0}\right)}=\sqrt{2\left(9.80 \frac{\mathrm{~m}}{s^{2}}\right)(2.0 \mathrm{~m})}=6.3 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

The change in momentum is

$$
\bar{F} \Delta t=\Delta p=m\left(v-v_{0}\right)=(50 \mathrm{~kg})\left(0-6.3 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=-313 \mathrm{~N} \cdot \mathrm{~s}
$$

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-3: Collisions and Impulse

Calculate the impulse experienced when a 50 kg person lands on firm ground after jumping from a height of 2.0 m .

Find the average force if the legs bent 0.025 m .

$$
\begin{aligned}
& \bar{v}=\frac{d}{\Delta t}=\frac{v_{f}+v_{i}}{2}=\frac{0+6.3 \frac{m}{s}}{2}=3.1 \frac{m}{s} \\
& \Delta t=\frac{d}{\bar{v}}=\frac{0.025 m}{3.1 \frac{m}{s}}=8.1 \cdot 10^{-3} s \quad \begin{array}{l}
\text { This is the total force, if we subtract } \\
\text { the force of gravity, that is the } \\
\text { weight that is always there we get: } \\
\overline{\mathbf{F}}=\mathbf{F}_{\text {grd }}-\mathbf{m g} \Rightarrow \mathbf{F}_{\text {grd }}=\overline{\mathbf{F}}+\mathbf{m g} \\
\mathbf{F}_{\text {grd }}=3.9 \cdot 10^{4} \mathrm{~N}+(50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathbf{s}^{2}\right) \\
\bar{F}=\frac{\Delta p}{\Delta t}=\frac{313 N \cdot s}{8.1 \cdot 10^{-3} s}=3.9 \cdot 10^{4} \mathrm{~F}
\end{array} \\
& \mathbf{F}_{\text {grd }}=3.9 \cdot 10^{4} \mathbf{N}
\end{aligned}
$$

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-3: Collisions and Impulse

Calculate the impulse experienced when a 50 kg person lands on firm ground after jumping from a height of 2.0 m .

Find the average force if the legs bent 0.50 m .

$$
\bar{v}=\frac{d}{\Delta t}=\frac{v_{f}+v_{i}}{2}=\frac{0+6.3 \frac{\mathrm{~m}}{\mathrm{~s}}}{2}=3.1 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\Delta t=\frac{d}{\bar{v}}=\frac{0.50 \frac{m}{3.1 \frac{m}{s}}}{=0.16 s}$
$\bar{F}=\frac{\Delta p}{\Delta t}=\frac{313 \mathrm{~N} \cdot \mathrm{~s}}{0.16 s}=1.9 \cdot 10^{3} \mathrm{~N}$

This is the total force, if we subtract the force of gravity, that is the weight that is always there we get:

$$
\begin{aligned}
& \overline{\mathrm{F}}=\mathrm{F}_{\mathrm{grd}}-\mathrm{mg} \Rightarrow \mathrm{~F}_{\mathrm{grd}}=\overline{\mathrm{F}}+\mathrm{mg} \\
& \mathrm{~F}_{\text {grd }}=1.9 \cdot 10^{3} \mathrm{~N}+(50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \mathrm{F}_{\text {grd }}=\mathbf{2 . 4 \cdot 1 0}{ }^{\mathbf{3}} \mathrm{N}
\end{aligned}
$$

Giancoli: Chap. 7 Phsx 114, Fall 2000

Chap 7-4: Conservation of Energy and Momentum

In collisions we rarely know how the force varies with time. For collisions of hard objects with no heat production (billiard balls) both kinetic energy and momentum are conserved.

Let 1 and 2 denote the objects then:

$$
1 / 2 m v_{1}^{2}+1 / 2 m v_{2}^{2}=1 / \mathbf{m v}_{1}^{\prime}{ }^{2}+\frac{1}{2} \mathbf{m v}_{2}^{\prime}{ }^{2}
$$

This situation is called elastic collision where the colliding objects

- Do not stick to each other.
- Do not produce any heat.
- The collision is very short in duration.

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-5: Elastic Collisions in One Dimension
Two particles move with velocities v_{1} and v_{2} and collide:
Conservation of Momentum

$$
\begin{align*}
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
& m_{1}\left(v_{1}-v_{1}^{\prime}\right)=m_{2}\left(v_{2}-v_{2}^{\prime}\right) \tag{1}
\end{align*}
$$

Conservation of Energy

$$
\begin{aligned}
& \frac{1}{2} m v_{1}^{2}+\frac{1}{2} m v_{2}^{2}=\frac{1}{2} m v_{1}^{\prime 2}+\frac{1}{2} m v_{2}^{\prime 2} \\
& m_{1}\left(v_{1}^{2}-v_{1}^{\prime 2}\right)=m_{2}\left(v_{2}^{2}-v_{2}^{\prime 2}\right)
\end{aligned}
$$

$$
\begin{equation*}
m_{1}\left(v_{1}+v_{1}^{\prime}\right)\left(v_{1}-v_{1}^{\prime}\right)=m_{2}\left(v_{2}+v_{2}^{\prime}\right)\left(v_{2}-v_{2}^{\prime}\right) \tag{2}
\end{equation*}
$$

Dividing 2 by 1
Conservation of Energy for Elastic Collisions

$$
v_{1}+v_{1}^{\prime}=v_{2}+v_{2}^{\prime} \longrightarrow v_{1}-v_{2}=-\left(v_{1}^{\prime}-v_{2}^{\prime}\right)
$$

Giancoli: Chap. 7 Phsx 114, Fall 2000

Chap 7-5: Elastic Collisions in One Dimension
Example: A billiard ball moves with velocity $v_{1}=v$, hits a second ball of the same mass at rest, find the final velocities.
Conservation of momentum:

$$
m v=m v_{1}^{\prime}+m v_{2}^{\prime} \Rightarrow v=v_{1}^{\prime}+v_{2}^{\prime}
$$

Conservation of energy:

$$
\begin{gathered}
v_{1}-v_{2}=v_{2}^{\prime}-v_{1}^{\prime} \Rightarrow v=v_{2}^{\prime}-v_{1}^{\prime} \\
v_{1}^{\prime}=0 \quad \text { and } \quad v_{2}^{\prime}=v
\end{gathered}
$$

Giancoli: Chap. 7
 Phsx 114, Fall 2000

Chap 7-5: Elastic Collisions in One Dimension

Example: A proton $\left(\mathrm{m}_{\mathrm{p}}=1.01 \mathrm{u}\right)$ going at speed $3.60 \cdot 10^{4} \mathrm{~m} / \mathrm{s}$ hits a stationary helium nucleus ($\mathrm{m}_{\mathrm{He}}=4.00 \mathrm{u}$), find the final velocities.

Conservation of momentum:

$$
m_{p} v_{p}+0=m_{p} v_{p}^{\prime}+m_{\text {He }} v_{H e}^{\prime}
$$

Conservation of energy:

$$
\begin{aligned}
& v_{p}-0=v_{H e}^{\prime}-v_{p}^{\prime} \Rightarrow v_{p}^{\prime}=v_{H e}^{\prime}-v_{p} \\
& m_{p} v_{p}=m_{p} v_{H e}^{\prime}-m_{p} v_{p}+m_{H e} v_{H e}^{\prime} \\
& v_{H e}^{\prime}=\frac{2 m_{p} v_{p}}{m_{p}+m_{H e}}=\frac{2(1.01 u)\left(3.60 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{1.01 u+4.00 \mathrm{u}}=1.45 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{p}^{\prime}=v_{H e}^{\prime}-v_{p}=1.45 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}-3.60 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}=-2.15 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Extrasolar Planet Candidates Around Sun-like Stars

