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Chap 7: Linear Momentum

Other than energy there are other quantities that are conserved,
Electric charge, and linear and angular momentum.

Chap 7–1: Momentum and Force

Linear momentum is defined to be the mass time the velocity

p = mv

v is a vector and so is p, p is in the same direction of v with a
magnitude

p = mv

The SI unit for momentum is mv which is kg⋅⋅⋅⋅m/s

The heavier and faster an object, the higher its momentum.
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Chap 7–1: Momentum and Force

To change the momentum of an object, a force has to be
applied.

Newton’s 2nd  Law of Motion, revisited:

The rate of change of the momentum of an object is equal to
the net force applied to it.
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These are equivalent as long as the
mass remains constant.
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Chap 7–1: Momentum and Force
Example: Find the force exerted by water coming out of a hose
at 13 m/s at a rate of 3 kg/s? Assume horizontal flow.
No splashing.
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At each second

px = mvx = (3 kg)(13 m/s) = 39 kg⋅⋅⋅⋅m/s

When the water hits a wall it is stopped and its velocity is zero.

The force it takes to do that is
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Chap 7–2: Conservation of Momentum

Two balls colliding, the momentum of each changes, the sum is
conserved.
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Chap 7–2: Conservation of Momentum

Momentum is conserved for any number of interacting bodies.

Law of conservation of momentum:

v2=0
v1

v’
Example: A 8,000 kg engine goes at 20
m/s and strikes a stationary engine.
Find the final velocity v′′′′.
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The total momentum of an isolated
system of bodies remains constant.
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Chap 7–2: Conservation of Momentum
Example: Find the recoil velocity of a 155 kg
gun that shoots a 0.50 kg bullet at 100 m/s.
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Chap 7–3: Collisions and Impulse

During collisions a large force is acting for a short time, during
which the objects deform.

Newton’s 2nd Law says F = ∆∆∆∆p / ∆∆∆∆t
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Impulse is defined to be
Impulse = F ∆∆∆∆t = ∆∆∆∆p
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Chap 7–3: Collisions and Impulse

Calculate the impulse experienced when a 50 kg person lands on
firm ground after jumping from a height of 2.0 m.

The impulse = F ∆∆∆∆t = ∆∆∆∆p. Although we don’t know the force we
can find the change of momentum:

Conservation of energy:   ∆∆∆∆KE = –∆∆∆∆PE

1/2mv2 – 0 = –mg(y – y0)
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Chap 7–3: Collisions and Impulse

Calculate the impulse experienced when a 50 kg person lands on
firm ground after jumping from a height of 2.0 m.

Find the average force if the legs bent 0.025 m.

v
d

t

v v
m

s m

s
f i= =

+
=

+
=

∆ 2

0 6 3

2
3 1

.
.

This is the total force, if we subtract
the force of gravity, that is the
weight that is always there we get:

F = Fgrd – mg ⇒⇒⇒⇒  Fgrd = F + mg

Fgrd = 3.9⋅⋅⋅⋅104N + (50kg)(9.80m/s2)

Fgrd = 3.9⋅⋅⋅⋅104 N
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Chap 7–3: Collisions and Impulse

Calculate the impulse experienced when a 50 kg person lands on
firm ground after jumping from a height of 2.0 m.

Find the average force if the legs bent 0.50 m.

v
d

t

v v
m

s m

s
f i= =

+
=

+
=

∆ 2

0 6 3

2
3 1

.
.

This is the total force, if we subtract
the force of gravity, that is the
weight that is always there we get:

F = Fgrd – mg ⇒⇒⇒⇒  Fgrd = F + mg

Fgrd = 1.9⋅⋅⋅⋅103N + (50kg)(9.80m/s2)

Fgrd = 2.4⋅⋅⋅⋅103 N
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Chap 7–4: Conservation of Energy and Momentum

In collisions we rarely know how the force varies with time. For
collisions of hard objects with no heat production (billiard balls)
both kinetic energy and momentum are conserved.

Let 1 and 2 denote the objects then:

1/2mv1
2 + 1/2mv2

2 = 1/2mv′′′′12 + 1/2mv′′′′22

This situation is called elastic collision where the colliding objects

• Do not stick to each other.

• Do not produce any heat.

• The collision is very short in duration.
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Chap 7–5: Elastic Collisions in One Dimension
Two particles move with velocities v1 and v2 and collide:
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Conservation of Momentum

Conservation of Energy for Elastic Collisions
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Chap 7–5: Elastic Collisions in One Dimension
Example: A billiard ball moves with velocity v1=v, hits a
second ball of the same mass at rest, find the final velocities.
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Conservation of energy:
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Conservation of momentum:
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Chap 7–5: Elastic Collisions in One Dimension
Example: A proton (mp= 1.01 u) going at speed 3.60⋅⋅⋅⋅104m/s hits a
stationary helium nucleus (mHe=4.00u), find the final velocities.
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Conservation of momentum:

m v m v m v m vp p p He p p He He= ′ − + ′
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Extrasolar Planet Candidates Around Sun–like Stars


